Mathematics of Machine Learning: Master linear algebra, calculus, and probability for machine learning - Formato Tapa blanda

Mathematics of Machine Learning: Master linear algebra, calculus, and probability for machine learning - Formato Tapa blanda

botón compartir redes sociales
Disponible.
Precio:
Q620.00

620.00 - - 1

Elegible para cuotas.
Ingresa el número de tu tarjeta en los detalles de pago para ver el monto total a pagar.


Cuotas Monto
3 (Sin recargo) Q206.67
6 (Sin recargo) Q103.33
10 Q65.72
12 Q55.28
15 Q44.43
18 Q37.37
24 Q29.06
36 Q19.55
48 Q14.79

Cuotas Monto
3 (Sin recargo) Q206.67
6 (Sin recargo) Q103.33
10 (Sin recargo) Q62.00
12 (Sin recargo) Q51.67
15 Q44.23
18 Q36.86
24 Q27.84
36 Q19.16

Cuotas Monto
3 Q218.55
6 Q110.57
10 Q66.50
12 Q55.80
18 Q38.58
24 Q29.06
36 Q19.46

Cuotas Monto
3 (Sin recargo) Q206.67
6 (Sin recargo) Q103.33
10 (Sin recargo) Q62.00
12 (Sin recargo) Q51.67
15 (Sin recargo) Q41.33
18 (Sin recargo) Q34.44
24 Q27.64
36 Q18.43
48 Q13.82

Cuotas Monto
2 (Sin recargo) Q310.00
3 (Sin recargo) Q206.67
6 Q109.02
10 Q65.72
12 Q55.28
15 Q44.85
18 Q38.06

Cuotas Monto
2 (Sin recargo) Q310.00
3 (Sin recargo) Q206.67
6 (Sin recargo) Q103.33
10 (Sin recargo) Q62.00
12 (Sin recargo) Q51.67
15 Q43.81
18 Q36.86
24 Q27.90
36 Q18.77
48 Q14.21

Cuotas Monto
3 (Sin recargo) Q206.67
6 (Sin recargo) Q103.33
10 (Sin recargo) Q62.00
12 (Sin recargo) Q51.67
15 Q43.81
18 Q36.86
24 Q28.42
36 Q19.63
48 Q14.47

Cuotas Monto
3 (Sin recargo) Q206.67
6 Q109.02
10 Q65.72
12 Q55.28
15 Q44.85
18 Q38.06
Producto de Tienda Mundial Ocultar detalles

Producto de importación, vendido por Amazon y transportado desde Miami. Cómpralo hoy y recibe en los próximos 6-14 días hábiles.

  • Build a solid foundation in the core math behind machine learning algorithms with this comprehensive guide to linear algebra, calculus, and probability, explained through practical Python examplesPurchase of the print or Kindle book includes a free PDF eBook Key FeaturesMaster linear algebra, calculus, and probability theory for MLBridge the gap between theory and real-world applicationsLearn Python implementations of core mathematical conceptsBook DescriptionMathematics of Machine Learning provides a rigorous yet accessible introduction to the mathematical underpinnings of machine learning, designed for engineers, developers, and data scientists ready to elevate their technical expertise. With this book, you’ll explore the core disciplines of linear algebra, calculus, and probability theory essential for mastering advanced machine learning concepts. PhD mathematician turned ML engineer Tivadar Danka—known for his intuitive teaching style that has attracted 100k+ followers—guides you through complex concepts with clarity, providing the structured guidance you need to deepen your theoretical knowledge and enhance your ability to solve complex machine learning problems. Balancing theory with application, this book offers clear explanations of mathematical constructs and their direct relevance to machine learning tasks. Through practical Python examples, you’ll learn to implement and use these ideas in real-world scenarios, such as training machine learning models with gradient descent or working with vectors, matrices, and tensors. By the end of this book, you’ll have gained the confidence to engage with advanced machine learning literature and tailor algorithms to meet specific project requirements. What you will learnUnderstand core concepts of linear algebra, including matrices, eigenvalues, and decompositionsGrasp fundamental principles of calculus, including differentiation and integrationExplore advanced topics in multivariable calculus for optimization in high dimensionsMaster essential probability concepts like distributions, Bayes theorem, and entropyBring mathematical ideas to life through Python-based implementationsWho this book is forThis book is for aspiring machine learning engineers, data scientists, software developers, and researchers who want to gain a deeper understanding of the mathematics that drives machine learning. A foundational understanding of algebra and Python, and basic familiarity with machine learning tools are recommended. Table of ContentsVectors and vector spacesThe geometric structure of vector spacesLinear algebra in practice spaces: measuring distancesLinear transformationsMatrices and equationsEigenvalues and eigenvectorsMatrix factorizationsMatrices and graphsFunctionsNumbers, sequences, and seriesTopology, limits, and continuityDifferentiationOptimizationIntegrationMultivariable functionsDerivatives and gradientsOptimization in multiple variablesWhat is probability?Random variables and distributionsThe expected valueThe maximum likelihood estimationIts just logicThe structure of mathematicsBasics of set theoryComplex numbers

* Precio y unidades sujetos a revisión de Pacifiko
Q620.00
Disponible.

Envío GRATIS Detalles

Garantía: Verifica las políticas de Tienda Mundial

100% de Compra Protegida.
Productos originales | Pagos seguros

Información del producto

PID M2QxNDc0Ym
Número de modelo 1837027870
Garantía 7 días sujeto a las políticas de Tienda Mundial

Garantía y Soporte

Para más información sobre Garantías en Pacifiko visitar la siguiente pagina: Garantías

No hay opiniones de clientes